Be Well.
MORGELLONS :
A DISCOVERY AND A PROPOSAL
Clifford E Carnicom
Feb 21 2010
IN PROGRESS - DRAFT
Note: I am not offering any medical advice or diagnosis with the presentation of this information. I am acting solely as an independent researcher providing the results of extended observation and analysis of unusual biological conditions that are evident. Each individual must work with their own health professional to establish any appropriate course of action and any health related comments in this paper are solely for informational purposes and they are from my own perspective.
A set of conditions that leads to the enhanced growth of the "bacterial-like" components of the cultures under study has been identified. This will be referred to as the discovery aspect of this paper.
A set of conditions that apparently leads to the inhibition of the growth of the "bacterial-like" components has also been identified. This will be referred to as the proposal aspect of this paper.
These bacterial-like forms comprise two of the four primary components that have been repeatedly identified as being distinctly characteristic of the so-called "Morgellons's condition. The additional two forms are that of the filament and erythrocytic forms, respectively, as enumerated within numerous earlier papers (e.g., Morgellons : A New Classification). The bacterial-like forms are at the crux of the research on this condition, as they appear to be the precursors and prerequisites to the matured development that encompasses all four forms. The existence of the bacterial-like (chlamydia-like and mycoplasma-like) forms can only be established with certainty at sufficient microscopic examination (approximately 10,000x).
DISCOVERY
Now for additional details on the discovery aspect of this paper. A general statement will be made, and then I will expand upon this statement with additional information:
"Given that a hydroxyl free radical exists within an acidic environment with sufficient nutrients, the growth of the Morgellons bacterial-like organisms in that same medium will increase rapidly in the presence of oxidizers."
Let us now discuss how this statement has evolved and what it means.
Culture Trials Under Examination
"In cells and tissues, such particles can attack a host of surrounding biomolecules to produce new free radicals, which, in turn, attack yet other compounds. Thus, the formation of a single free radical can initiate a large number of chemical reactions that are ultimately able to disrupt the normal operations of cells".4 |
Oxidant | Oxidation potential, V |
---|---|
Fluorine | 3.0 |
Hydroxyl radical | 2.8 |
Ozone | 2.1 |
Hydrogen peroxide | 1.8 |
Potassium permanganate | 1.7 |
Chlorine dioxide | 1.5 |
Chlorine | 1.4 |
Some new air cleaning devices are using free radicals or Reactive Oxygen Species (ROS) to "oxidize" indoor air. Free radicals have been shown to be damaging to human health. Testing is lacking on the by-products of the reactions between free radicals and the components of indoor air. Here is a quote from a brochure on another "cure-all for indoor air" product. It is a cause for concern. "When the HVAC system is in operation the cell creates an Advanced Oxidation Process consisting of Hydroxyl Radicals, Super Oxides, Hydroperoxides (Hydrogen Peroxide), UV light and ozonides (ozone)." It goes on to say: "All are friendly oxidizers. By friendly oxidizers we mean oxidizers that revert back to oxygen and hydrogen after the oxidation of the pollutant." However, these are not "friendly oxidizers." They are well known as Reactive Oxygen Species (ROS) or free radicals and are involved in a whole host of health problems from cancer to heart disease. |
PROPOSAL
Please recall the dogmatic qualification at the beginning of this report; no medical advice, diagnosis or assessment of any kind is being made here. I am making information available that you may or may not wish to consider in consultation with the health professional of your choosing.
The question that naturally arises when the growth of a culture is enhanced is whether or not this growth can be hindered, impeded or stopped. The ultimate desire is, of course, to kill the organism(s) without damaging the host. It is a formidable problem in this case. I understand the question and that millions across the globe may be asking it. It is the natural and easy question to ask but, unfortunately, the answers may not be any more forthcoming than the tribulations that have brought us to the current state of knowledge. These inherent difficulties do not even begin to address the lack of proper resources to tackle the problem. It has always been my viewpoint that the proper means of addressing the current situation begins with the simple and factual identification of the particular "organisms" under study. Such an identification has not taken place and there is no real prospect of this occurring in a comprehensive and honest fashion in the immediate future. My thoughts on this subject are expressed rather thoroughly in the recent paper that I have referenced.10 It is hopeful that the central tenets of that paper can someday be proven wrong, but in the meantime, effort must be directed toward the more impending and obvious need for suppression of growth, at least within the culture environment that has been established. What I shall present here is a summary of the progress of the work in that direction. The general strategy to be employed is that the understanding of the conditions that support growth may well lead us to the eventual repression of that same growth.
We can begin the work on the problem by recalling a couple of the more salient observations that have been made.
In the culture environment, it has been established that the organism(s) flourish within an acidic environment. In addition, it has also been stated in earlier reports that many biochemical reactions only take place within a narrow pH [acid or alkaline] range11. Therefore, one of the first strategies to consider is to change the acidity or alkalinity of the growth environment and see if progress results. What has been observed in the cultures thus far is that an increase to the alkaline side does indeed appear to inhibit the growth of the culture. It does NOT "kill" the "organism(s)", specifically the bacterial-like forms, but it does appear to put them into a state of dormancy or stasis. At this point, nothing can be stated to extinguish the organism(s) in their entirety. As has mentioned extensively in prior reports, the structures have been subjected to extreme chemical and heat conditions and the potential, if not the capability, to survive remains intact.
Nevertheless, potential dormancy is a preferable alternative to active growth. There is a great deal of literature in the health fields that extols the virtues and benefits of a shift to the alkaline side within the human diet and body. There are many individuals in these fields that emphatically declare that many diseases and ill conditions are a direct result of the acidic diet and acidic state of current generations. There are many resources that contrast alkaline diets in opposition to acidic diets, and it becomes difficult to argue with the general merits of the respective foods involved. There are health professionals that claim that the pH of the urine is one of the methods by which the body can be assessed with respect to its acidic or alkaline state and that discuss the respective health concerns that accompany the acidic condition. The first part of the proposal, therefore, is that the merits of alkalizing the growth medium, be it a culture dish or the human body through a chosen diet, be considered as one potential mitigating factor to the damages that have been observed. I will leave it to the reader to pursue this avenue of research in consultation with the health professionals of their choice. If additional information in the laboratory setting becomes available that affects the specifics of the current observations, I will continue to make that information freely available.
Now let us talk further on the subjects of oxidation and free radicals, which brings us to the second aspect of the current "proposal". The evidence at this point indicates that oxidation, in general, increases the growth within the stated culture medium. The growth rate is quite dramatic and has been verified by observation under the microscope at high magnification. The chlamydia-like and mycoplasma-like forms grow explosively under the oxidative conditions that have been developed.
The obvious approach to reversing the results of oxidation is to consider the use of anti-oxidants.
At this time, a specific interest in seeking an anti-oxidant to the hydroxyl radical has been pursued. The topic of research is therefore, at this stage, that of seeking a "hydroxyl scavenger", i.e,, a compound or agent that will combine with the free hydroxyl radical and form something that is inert or less damaging than the original radical. The work here has been conducted solely with the objective of reducing the growth rate within the culture medium. However, as in the case of alkalization of the diet and body, there are many health professionals that will pronounce the merits of anti-oxidants and their beneficial effects on human health. There is a plethora of literature and research on the effects of oxidation and free radicals to human health. This is also a subject that can be discussed and researched at great length; again I will have to forego this in the interest of time and progress to the reader.
Three such candidates have been identified in a search of the literature thus far; this list includes ascorbate, glycerin and "ester salts". 12,13,14 It is anticipated that many other candidates will be added to the list if this research gains further momentum. The specific ester salt that has been developed and applied in this test case is sodium citrate; numerous potential candidates could be developed from the patent that has been referenced.
The important question to be answered at this time is whether or not the application of such "hydroxyl scavengers" can suppress the growth rate within the culture. In the interest of brevity, I will report the results of the testing underway in a condensed fashion. This is a classic case where a set of photograph reveals more than can be written about under the circumstances. If additional time permits in the future, this discussion can be continued.
PHOTOGRAPHS - HYDROXYL RADICAL SCAVENGER TRIALS
| |
A comparison of culture trials with and without antioxidants added. On the right side is a white wine culture medium with the filament stage (final stage) of the pathogenic form introduced. In addition, iron sulfate and hydrogen peroxide has been added. The growth of the culture (bacterial-like forms) in the culture on the right side is evident. Elapsed period approximately 24 hrs. On the left side are the same conditions as those on the right, except for the addition of three hydroxyl radical scavengers, as identified through a literature search. Vitamin C, glycerol (glycerin) and sodium citrate has been added to the culture preparation on the left side. No such rapid or extension of the bacterial-like growth has occurred in this trial. The antioxidant dosages used can be described at a later time. | A trial culture similar to that described in the photograph set to the left, with the exception that more time has elapsed. Several days have elapsed with the growth of the culture that is shown here (right side). There is no claim whatsoever that no growth of any kind occurs in the antioxidant trial (left culture dish); only that the growth of the culture does appear to be inhibited with the addition of these specific antioxidants. Determination of growth of any kind can only be determined at the microscopic level at sufficient magnification (~10,000x). It should also be stated that this represents the early stage of growth development (bacterial-like forms only) and that inhibition trials at the filament stage may represent an entirely different set of conditions. |
| |
Another example of unrestrained growth of the culture without antioxidants. This culture differs from the above in that it uses a transfer from a filament culture that has been subjected to an alkali and heat, as described in earlier reports. The original source material is therefore presumed to in a "dormant" stage, and is primarily composed of the bacterial-like forms as opposed to the filament stage. | This culture is again the same as on the left side of this set of photographs, with the exception of the addition of the three antioxidants mentioned. Each antioxidant alone appears to have some inhibitory effect, however the combination of all three antioxidants appears to be the most successful in suppressing growth. Additional extensive research is required to clarify the numerous variables of chemistry and metabolism that are in effect. |
| | |
An example of unrestrained growth at approx 300x. This magnification is sufficient to reveal only the gross structure of culture development. There is, however, a unique structural aspect that is characteristic of the growth than can be established with sufficient observation. | The unrestrained growth of the culture at 10,000x. This high level magnification is required to uniquely identify the bacterial-like forms that are the subject of this and many previous reports. This photograph reveals primarily the pleomorphic form (mycoplasma-like) however the chlamydia-like form is also evident upon sufficient observation. | Another example of unrestrained growth of the culture, not subjected to the three antioxidants. Magnification approx. 10,000x. |
| | |
An example of the growth that has been affected by or apparently restrained with the presence of the three hydroxyl scavengers mentioned : Vitamin C, glycerol and sodium citrate. Magnification approx. 300x. The antioxidants appear to create somewhat of a "precipitate" form and to alter or destroy the general structural integrity of the majority of the bacterial-like colonies. Again, absolutely no claim of termination of the bacterial-like forms is stated here; it does appear, that growth has been suppressed to some degree. | An example of the restrained or altered growth with the addition of the hydroxyl radical scavengers at high magnification, approx, 10,000x. This photograph is appropriately compared with the one that is immediately above. Alteration to a precipitate like form reduces the level of detail at this high magnification. Evidence of extensive growth of the bacterial-like structures is not readily apparent. | Another example of the altered or restrained growth at high magnification (~10,000x). Also appropriately compared with the two photographs immediately above. |
Summary Statement - To be continued as time and circumstances permit. THIS VERSION IS IN THE DRAFT STATE ONLY. CEC
I high appreciate this post. It’s hard to find the good from the bad sometimes, but I think you’ve nailed it! would you mind updating your blog with more information?
ReplyDeletetks industrial